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Abstract. A model solid with a double-well potential at each site and intersite coupling J is 
considered, whereJ is sufficiently small that kTc is much less than the depth kTo of the well. 
The effect of the local breaking of symmetry that occurs around To is investigated for a single 
site. Anomalies are particularly noticeable in the oscillation frequencies, mean squared 
displacement and heat capacity. There are examples of materials and computer simulations 
that display such behaviour. 

1. Introduction 

Many solids display structural phase transitions which can be modelled by an on-site 
double-well or multi-well potential (see, for example, Onodera 1970, Eisenriegler 1974, 
Bruce 1980, Janssen 1986, Benkert et a1 1987, Benkert 1987). In such a potential v(x)  
(figure 1) the system undergoes some sort of crossover or quasi-transition around a 
temperature T = To where kTo is the characteristic well depth. For T > To one may 
imagine a particle oscillating freely across the whole well, whereas when T < To it 
oscillates temporarily in the right or left half of u ( x ) ,  i.e. a ‘bifurcation’ has already 
occurred. Thus at T < To the system can be thought of as having locally already made 
the phase transition in a fluctuating sense. 

The macroscopic phase transition at temperature Tc is a cooperative phenomenon 
mediated by the intersite coupling, J ,  and quite separate from To where, although there 
is a displacement at each site, the system average remains symmetrical. In order to focus 
on the behaviour around To, we assume that Tc is small compared with To. Hence the 
thermodynamics of a single site are examined, and it should be noted that the precursors 
expected at T = To are purely on-site effects which are quite different from the coop- 
erative precursors of critical fluctuations around Tc. 

Some examples are considered in section 3. The present purpose is to investigate this 
behaviour in more detail by computation. The Hamiltonian we envisage is 

As already noted, the intersite coupling J,, has no direct connection with the depth of 
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Figure 1. The double-well potential in one 
dimension with the two temueature 
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Coupling J=kT, 
regimes T > To and T < To. The coupling 
kTc between sites is assumed small. 

the well, and is neglected in this work. The only point relevant is that the intersite 
coupling is written in the form (1.1) so that it averages to zero in the high temperature 
disordered state, unlike the more customary formJ,,,(x, - x , ) ~  (Bruce 1980). 

The simplest double-well potential is 

u ( x )  = - a x 2  + px4. (1.2) 
The minima are at xo, given by x o  = d ( a / 2 P ) ,  and the characteristic well depth, or 
rather the height of the central barrier, is kTo = a2/4p.  Hence the well can conveniently 
be rewritten as 

U ( X )  = kTo[ l  - ( x / x ~ ) ’ ] ~  - kTo (1.3) 
which defines the zero of energy. 

We also need to consider the case of a negative coefficient a in equation (1.2); 
defining x ;  as Ial/2p, then as before we have tlalx; = px: = k T o  and the well has the 
form 

V ( X )  = kTo[ l  + ( x / x ~ ) ~ ] ’  - kTo. (1.4) 
Thus at To there is again a crossover from predominantly parabolic to quartic form. A 
phase transition remains possible if the intersite coupling is sufficiently strong and again 
we consider the I,,, such that Tc < To. Under such conditions one would also expect 
some kind of crossover behaviour at To in the disordered phase in the single-well case 
(1.4). Of course the double (1.3) and single (1.4) wells correspond respectively to the 
usual order/disorder and displacive phase transitions (Onodera 1970, Bruce 1980), at 
least when Tc < To. It is therefore of interest to compare the behaviour at the quasi- 
transition in the two situations to see clearly the specific effects of the local bifuraction 
in the double-well case. 

We emphasise again that the crossover behaviour we are discussing is entirely 
different from the more sophisticated type of crossover displayed (in principle) by all 
displacive transitions near Tc (see, for example, Muller eta1 1982, Baker etaZl982). The 
latter results from the growth of locally ordered regions as Tc is approached from above. 
Such a region treated as a whole displays an Ising type of behaviour, where it is polarised 
in the positive or negative x direction if the region is large enough, even if the single site 
is well in the soft mode regime T > To. The reason is easy to see. The total energy of an 
ordered region, including the J,,,, has a double-well form even in the displacive case, 
with a well depth proportional to the size of the region. Thus it tends increasingly to the 
Ising limit as the region grows. All of this depends on the growth of short range order, 
and is quite distinct from the behaviour we have discussed, which is concerned purely 
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Figure 2. Boltzmann probability distributions for a particle in the double-well potential u ( x ) ,  
(Y > 0, (figure 1) at four temperatures: (a )  T = 0.25T0 with (x’) = 0.918x;; (b) T = To with 
(2) = 0.833~;; (c) T = 4.oTo with (x’)  = 1.042;; (d) T = 16.0T0 with (x’) = 1.666~;. 

with the well on a single site. In some situations it should be possible to distinguish 
experimentally between these two crossover effects if Tc 4 To and if the dimension 
(presumably d = 3) is sufficiently greater than the critical dimensionality dc of the type 
of transition being observed. 

2. Analysis 

The Boltzmann probability distribution exp( - u/kT) over the double well is plotted 
(figure 2) for various temperatures. Note that at To the distribution already demonstrates 
considerable splitting, and that the small dip in the centre persists for arbitrarily high 
temperatures. 

Figure 3(a) shows the mean squared displacement (x2 )  as a function of T ,  related to 
the single-well susceptibility as usual by 

x = (x2) /kT.  (2.1) 
The well-defined minimum in (x2)  at T = 0. 85T0 is really the most important physical 
effect. As one comes down from a high temperature the distribution clearly narrows, 
but widens again as the system decends into the regime of the two minima. Above To 
the curve appears substantially linear over the range plotted, while at high temperatures 
it tends towards the limiting form 

In fact at T S To the system is dominated by the px4 term in the potential and the 
limiting behaviour of all equilibrium quantities is expressible using gamma functions 
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Figure 3. (x2) versus Tfor (a) the double well, CY > 0 (note the minimum at 0.85T0) and ( b )  
the single well, CY < 0. 
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Figure 4. Variation of the quasi-order parameter 
D (equation (2.3)) with temperature. 
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(Eisenriegler 1974). The low temperature limits are given by parabolae suitably fitted 
to the minima. 

We have given thought to whether one may define a quasi-order parameter to 
describe the bifurcation. We choose the quantity (figure 4) 

D = ((x4) - (x’)’)/(x’)>’. (2.3) 

which varies from zero to 

(r(t)/2r(a))2 - 1 = 1.88. (2.4) 

As expected, there is achangein behaviour around T = To, but high and low temperature 
limits are approached rather slowly as shown by the logarithmic plot. An appropriate 
measure of bifurcation might therefore be I) given by 

I)’ = 1 - D/1.188. (2.5) 

Thermodynamic quantities can be derived from the free energy 

G ( T )  = -kTln exp(-v(x)/kT) d(x/xo) (2.6) i 
The most striking manifestation of the double well is seen in the heat capacity C( T )  
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Figure 5. Heat capacity Cversus Tfor the two cases. (a) The double well, (Y > 0, illustrating 
maximum and minimum values during the crossover around To from ‘parabolic’ to ‘quartic’ 
limits; ( b )  the single well, a < 0. 
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Figure 6.  Internal energy U versus T for the 
double-well system. Notice how U approaches 
both limits from above. 

(figure 5(a ) ) .  This demonstrates a pronounced anomaly during the crossover between 
the low temperature limiting value of t k  (characteristic of a parabolic potential) and the 
high temperature limit f k  (pure quartic). The implication is that the quasi-transition has 
the form illustrated in figure 6, where the internal energy U ( T )  approaches the low T 
limit of fkTfrom above. 

The peak in C( T )  arises as follows. At T < To the particle oscillates mostly in the left 
or the right well which contains a cubic term in the potential when expanded around the 
minima k x o .  This is well known to increase the specific heat of all solids at high Tabove 
the ideal value of Dulong and Petit. One can say that the well is effectively softened 
more on the low 1x1 region than hardened on the high 1x1 side because the particle spends 
more time in the former: a soft potential gives an enchanced C ( T )  as one can see from 
V - x“ with n 2. Similarly, at E > kTo the potential (1.2) has steep sides somewhat 
like a square well, which has zero specific heat (aside from the kinetic energy which we 
have ignored in (2.6)). We therefore expect C ( T )  to be below the high Tlimit in figure 
5(a) for T > To. 

For comparison the same results are shown for the single well (equation (1.7)) in 
figures 3(b) and 5(b).  Naturally (x2) now has no minimum. Also the crossover has a 
smooth form with no extrema in C( T),  since there is a smooth transition in well shape 
from quartic ( T  S To) to quadratic form ( T  Q To). 
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Figure 7. Contour plot of the single-site potential Figure 8. The power spectrum, equation (3.3), 
with multiple (four) wells at ( x , y )  = shown for a range of temperatures above and 
( f l ,  0), (0, 21) around a central maximum of below To. Note that the central peak is not fully 
height kTo used in the computer simulation of shown on these spectra. The spectra are labelled 
section 3. The form of the potential is given in in units of TITo. 
equation (3.2). The contours are labelled in units 
of kTo. 

3. Computer simulation 

We have carried out a computer simulation to give unequivocal evidence of the reality 
and observability of the quasi-transition at To. We have considered the lattice vibrations 
in a three-dimensional system with the following Hamiltonian: 

H = i (x: + Y:) + C V(xn, Yn) - 2 J(xnxm + YnYm). (3.1) 
n n pairs 

The coupling, to nearest neighbours only, is weak and ‘ferromagnetic’. The on-site 
potential 

(3.2) 

is two-dimensional and contains four wells (figure 7). The values of the model parameters 
are given in table 1, and were chosen so that Tc = 4To (where To is the height of the 
central barrier in v(x, y), i.e. where kTo = a2/4P), and so that the four wells were quite 
anisotropic. With our choice of parameters kTo = 1, and the minima in v(x,y) lie 
at ( x ,  y) = ( t l ,  0), (0, tl). Here x and y represent the components of some two- 
dimensional variable of the entity at each site, and are not necessarily associated with 
displacements. Details of the method of the simulation are given in Giddy et al( l989) .  

v(x, y) = a(x2 + y2) + P(x2 + y2)2 + yx2y2 exp[-6(x2 + y2)] 
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Table 1. The values of the model parameters used in the computer simulation of section 3. 
See equations (3.1) and (3.2) for details. 

a P Y s J 
~~ 

-2.0 1 .o 20.87 0.6711 0.1 

0 2 4 6 8 1 0  
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Figure 9. Variation of frequency, o(q = 0), of the peaks in figure 8 for the two-dimensional 
potential with multiple wells (figure 7 )  with Tc = fTo.  The line dominating above To (shown 
by m) is doubly degenerate. The splitting of the double degeneracy around and below To 
breaks only local symmetry. 

The calculations were performed using 4096 unit cells on the AMT-DAP in Cambridge. In 
figure 8 we plot the power spectrum 

S,,(q, U> = j ( 4 q 7  O)x(-q,  t)> e x p ( i 4  dt  (3.3) 

for q at the centre of the Brillouin zone over a range of temperatures above and below 
To. Note that as the temperature drops, the high temperature, high frequency mode 
decreases in intensity, and the two low temperature, low frequency modes increase. 
Figure 9 shows the evolution with temperature of the estimated positions of the peaks 
in S,,(q, U). At high T % To there is a single twofold-degenerate frequency as expected 
from the symmetry: the particle oscillates over the whole region of the wells including 
the central maximum. This frequency softens as the temperature drops. Around and 
below To but above Tc, some particles are confined in one or other of the four wells, and 
oscillations polarised in the two directions within each are no longer equivalent. Hence 
the frequency is split into two components, associated with ‘longitudinal’ and ‘transverse’ 
motions, with a central (w = 0) peak due to hopping between wells. Of the two low 
temperature modes that with the lower frequency is associated with the ‘longitudinal’ 
motion, and that with the higher frequency with the ‘transverse’ motion. Such local 
apparent breaking of symmetry defines To rather than Tc. Of course overall fourfold 
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symmetry is retained in the sense that one obtains exactly the same data for the cor- 
relations (x (q ,  O)x(-q,  t )}  and (y(q, O)y( -q ,  t ) )  of displacements along thex andy direc- 
tions. The quasi-transition at To is not sharply defined: rather it is a smooth crossover 
from displacive to order-disorder behaviour. 

4. Other examples 

The clearest experimental case is that of lead phosphate Pb3(P04)2. These crystals 
possess a phase transition from a trigonal phase to a monoclinic phase at about 450 K. 
Salje and Wruck (1983) have established a local symmetry breaking by displacement of 
Pb ions into one of three equivalent wells in the trigonal crystal. An excess specific 
heat which cannot be explained by critical fluctuation is observed between Tc and a 
temperature T3 > Tc, where there is a change in the gradient of C J T ) .  This can be 
identified as a quasi-transition involving the three minima, with T3 analogous to To 
above. This local displacement of the lead atoms from the threefold axis, and their 
subsequent hopping between the macroscopically symmetrically equivalent sites is also 
apparent from the behaviour of the integrated intensities and linewidths of hard Raman 
bands above Tc (Salje et a1 1983). X-ray and neutron scattering experiments (Bismayer 
and Salje 1982) show diffuse super reflections above Tc which are also explained by the 
quasi-transition. 

Measurements of the dielectric constants in perovskite materials (Muller et a1 1982) 
would appear to provide an example of the two crossover effects occurring nearly 
simultaneously. On coming down in temperature the phonon frequencies undergo a 
change in behaviour, which we ascribe as being probably the To effect rather than the 
other crossover due to critical fluctuations, because the temperature at which it occurs 
is rather far out in the wings of the critical fluctuation peak in the measured dielectric 
constant. 

Molecular dynamic simulation of the surface reconstruction of W(O0 1) has been 
carried out by Wang (1986). The mean squared displacements of surface atoms are seen 
to behave as (x2}  above, and the surface energy is characteristic of the internal energy 
U ( T )  for a quadruple well potential, i.e. similar to figure 6. In the phonon frequencies 
(Wang et a1 1987), Tc and To are seen to be concurrent, which also demonstrates that 
the double well character may promote transition in view of (2.1) and the minimum in 
(x2 )  at To. 

Kinetic studies of the ordering at phase transitions, i.e. variation of the order 
parameter Q with time, confirm that the two regimes exist. Displacive processes are 
rapid, with ln(Q) a t as the system moves into the energy minimum, whereas order/ 
disorder processes with multi-well potentials are characterised by Q ln(t) (Salje 1988). 
Of course one cannot observe both types of behaviour on cooling in a single material 
because ordering must be associated with Tc. However shock heating an ordered sample 
to temperatures T > Tc in the two ranges T < To and T > To allows the two distinct 
kinetic regimes to be observed during disordering. An example is albite (Carpenter and 
Salje 1989). In this case the distortion of the anion ring is described by a double-well 
potential, and is believed to be the primary order parameter, the preferential attachment 
of Si and A1 to certain sites after distortion being a secondary phenomenon. 
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